NADA WIBIIU L=4=-9TL

NASA MEMO 1-2-59L

o

NASA

MEMORANDUM

A METHOD FOR COMPUTING TURBULENT HEAT TRANSFER IN THE
PRESENCE OF A STREAMWISE PRESSURE GRADIENT
FOR BODIES IN HIGH-SPEED FLOW
By Nathaniel B. Cohen

Langley Research Center
Langley Field, Va.

NATIONAL AERONAUTICS AND
SPACE ADMINISTRATION

WASHINGTON
March 1953







NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

MEMORANDUM 1-2-59L

A METHOD FCR COMPUTING TURBULENT HEAT TRANSFER IN THE
PRESENCE CF A STREAMWISE PRESSURE GRADIENT
FCR BODIES IN HIGH-SPEED FLOW
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SUMMARY

A method for computing the turbulent heat transfer to two-
dimensicnal and axisymmetric bodies in high-speed flow is derived from
the integrated equations of the boundary layer by utilizing a Stewartson
type transformation. A modified Reynclds analogy between skin friction
and heat transfer which depends upon local pressure gradient results
from the analysis. Exact and approximate sclutions are derived from the
approximate differential equations; the exact solution is applicable for
arbitrary initial (transition) conditions and the approximate solution
requircs fully developed turbulent flow from stagnation point or leading
edge.

Fcr the exact solution, the assumption of fully developed turbulent
flow from the stagnation point yields a sclution representative of a
variety of arbitrary transition solutions. The exact solution (restricted
tu stagnation initial conditions) and the approximate solution are shown
to agree within 5 percent when applied to several blunt shapes. The
present scvlutions generally predict the measured heating rates on these
bodies within the accuracy of the measurements except where transition

was thought tc begin in the region of the peak predicted heat transfer.

The present sclutions appear to be sufficiently accurate for design
purposes. The exact sclution alone offers the generality of arbitrary
transition; the approximate solution offers accuracy and relative sim-
plicity but requires the assumption of stagnation-point initial condi-
ticns. Because of the scarcity of knowledge of the transition phenomenon,
this latter restriction does not seriously impair the usefulness of the
approximation.



INTRODUCTION

Reentry conditions at high Reynolds number and the possibility of
surfaces roughened by collisions with meteoric particles and dust are
conducive to the existence of turbulent boundary layers on missiles,
satellites, spaceships, and similar vehicles entering a planetary
atmosphere. A primary concern of the ballistic missile program, for
example, is the accurate prediction of turbulent heat transfer to a
blunt body in high-speed flow. This problem has inspired a great deal
of research in recent years; although many approximate theories have
evolved, none appears to be sufficiently general for widespread
application.

The problem is the computation of turtulent heat transfer from a
compressible (possibly dissociated) gas to a cold wall in the presence
of a pressure gradient. Except for the case with dissociation, the
zero-pressure-gradient skin friction may be computed with sufficient
accuracy either from mixing length theories, for example, those of
Van Driest for a plate (ref. 1) and for a cone (ref. 2), or from an
empirical power law such as the Blasius law, (See, for example, ref. 3.)
Compressibility in the latter case may be taken into account through a
reference temperature formulation of the pcwer law. In both methods,
heat transfer is computed from the skin friction through the use of
Reynolds analogy between heat transfer and skin friction suitably modi-
fied for the effect of a nonunit Prandtl number.

The presence of a pressure gradient seriously modifies the flow and
the subsequent friction and heat-transfer tehavior. Most recent methods
of predicting the turbulent heat transfer to a body in the presence of a
pressure gradient center about extensions cf the inverse power law friction
coefficient. Some of these are described ty Libby and Cresci in refer-
ence 4, The simplest uses flat-plate skin friction and heat-transfer rela-
tions evaluated for the local flow conditicns on the body in question.
Rose, Probstein, and Adams (ref. 5) combine a flat-plate shear law with
the complete momentum equation integrated across the boundary layer and
including pressure gradient. Heat transfer is computed from the resulting
skin friction through the flat-plate Reynolis analogy modified to account
for Prandtl number. Reference 5 reasons that the effect of the pressure
gradient on the velocity and temperature profiles is small and thus the
flat-plate friction law and analogy between heat transfer and skin fric-
tion are valid.

A relation between heat transfer and szin friction including the
effect of pressure gradient may be derived from the integrated momentum
and energy equations. (See refs. 4L, 6, and 7.) Bloom and Martellucci
(ref. 6) were apparently the first to use this relation, and they combined
it with an inverse power friction law and a reference enthalpy correction



for compressibility effects. The results of this method and a similar
method (ref. 4) indicated predicted heat transfer lower than that found
experimentally, and excessive dependence of the modified Reynolds anal-
Ogy upon pressure gradient. Assumption of the validity of the Crocco
form of the total enthalpy-velocity relation in the boundary layer
appears to have caused this trend.

Another method of accounting for compressibility and pressure gra-
dient was developed by Reshotko and Tucker. (See ref. 8.) This method
utilizes the Stewartson transformation (ref. 9) applied to the turbulent
case, a friction law including the effect of pressure gradient upon
shape factor, and a Reynolds analogy factor evaluated from an approximate
solution for laminar flow in reference 10. This approach is restricted
to isothermal walls with adverse and small favorable pressure gradients
regardless of wall temperature and to flow with large favorable pressure
gradients over highly cooled surfaces. M. Richard Dennison while at
Missile Systems Division of Lockheed Aircraft Corporation (in a paper
not generally available) extended Van Driest's analysis to include the
effect of pressure gradient upon Reynolds analogy, neglecting, however,
the direct effect of pressure gradient upon the momentum equation. This
assumption appears to be justified only for highly cooled surfaces. The
analysis is further restricted to isothermal walls.

The present analysis attempts to correct the deficiencies of the
aforementioned methods and provides a comprehensive method for the com-
putation of turbulent heat transfer in compressible flow for high sub-
sonic and supersonic as well as hypersonic conditions. The effect of
pressure gradient is retained in the integrated momentum equation and a
modified Reynolds analogy is derived. The Stewartson transformation is
used to reduce these equations to a form close to the incompressible
relations. An incompressible friction relation which neglects the
effect of pressure gradient upon the boundary-layer shape factor is
assumed to be valid in the transformed coordinate system and the com-
pressible friction coefficient is then calculated by using a form of
the reference temperature method. The heat transfer is then calculated
from the friction and the modified Reynolds analogy.

This treatment includes the possibility of nonisothermal heated or
cooled surfaces but is limited to favorable and small adverse pressure
gradients. Although dissociation is neglected, variable specific heats
may be approximated through use of a linear interpolation formula.

Heat-transfer rates predicted by the present method are compared
with experimental results and with other predictions.



SYMBOLS

coefficient in friction law
coefficients in enthalpy-veloc:ty relation
dimensionless stagnation velocity gradient

1 2

skin-friction ceoefficient, TW/E Oele

specific heat at constant pressure

specific heat at constant volure

parameters given in equations (Alh) and (AlS)

g ombl T(m+l)-1
function defined by \/h E:xn } i dg
“ 0

=

function defined by equation (éja)

furction defined by equation (63b)

o]
total enthalpy, h + %?

enthalpy difference, H - H,

static enthalpy

thermal conductivity

reference length

Maclh number

reciprocal exponent in friction law

Kep
Prandtl number, ~
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local Reynolds number,

e
Po . 2hgl
reference Reynolds number, —3 —
Ho
_qw
Stanton number, — "
Pelelay

reciprocal exponent in velocity-profile power law
pressure

wall heat transfer

body radius

temperature

velocity in X-direction in transformed plane
veloeity in x-direction in physical plane
transformed coordinate along surface

physical coordinate along surface

transformed coordinate normal to surface

physical cocrdinate normal to surface

Reynolds analogy factor

constant in density-enthalpy correlation equation
pressure gradient parameter

function defined by equation (37a)

function defined by equation (62)

ratic of specific heats, cp/cv

transformed thickness of boundary layer

transformed thickness of total enthalpy boundary layer
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Mr

@}

>

transformed thickness of velocity boundary layer

physical thickness of boundary layer

physical thickness of total enthalpy boundary layer

physical thickness of velocity boundary layer

[e o}
transformed displacement thickress, Jf (l - %L)dY
0 e

transformed enthalpy thickness, Jﬁ

® %
<l _ H_,)dy
0

He

o0
displacement thickness, ,]F (1 . )dy
0

enthalpy recovery factor

reduced momentum thickness (eq. (L48a))

[¢o]
momentum thickness, Jf JL-G_- lL>£L dy
0

Ue Ue/Pe
U U
transformed momentum thickness, —|1 - —=—)dY
o Ue Ue

function defined by equation (37b)

[}

. U \2 U
transformed thickness, (_—> ( - ——)dY
o \Ve Ue

absolute viscosity

transformed dimensionless length,

o |24

density

wall shear
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o) enthalpy convection thickness, h/ 2. - §f¥>i1 dy
o Ve He '/ Pe
N 00 U H*
P transformed enthalpy convection thickness, h/ — 1 - ——1>dY
0 Ue He
Subscripts:
aw evaluated at wall in insulated case
e evaluated outside boundary layer
o) evaluated at reference location (stagnation point) outside
boundary layer
r evaluated at reference location in boundary layer
t evaluated at transition point
w evaluated at wall
Primed quantities are evaluated at the temperature T'. A bar over

a quantity represents evaluation in the transformed plane; for example,
Ef, ﬁ&, ?&. A bar under a quantity means it has been made dimension-

less with respect to the corresponding quantity at thg constant refer-

p
ence location or to a reference value. Thus, U = —E s = -t

€ JEEB — Py’

_ Mr
= T

r , and so forth.

m
~jH
-

THEORY

Derivation of the Transformed Equations

The equations of motion and energy in the physical plane.- The
boundary-layer equations of motion and energy may be integrated across
the boundary layer to obtain the classical Karman momentum integral and
its energy counterpart. See, for example, references 5 and T. The
resulting equations are for axisymmetric steady flow:




Momentum:
* du dp c
de 571 1 e 1 2 1 dr f
== | =+ = —Z + = =8 = = 1
ax * (2+8>uedx be & | T ax 2 (1)
Energy:
) *
ae 1 dPe 1 due g dHgT g g -y
— | — — + — + % + = =9 = < (2)
dx Pe dx e dx He dx r dx PeleHe
where

_ [T el
0 s jO Pele <l ue)dy (2)
5% = M/ (l - DOE >dy (3b)
0 e-e

N 0 11 H !
oe [T o
o Pele \ H*

Equations (1) and (2) are very general witiin the usual Prandtl boundary-
layer assumptions requiring that the boundiary-layer thickness be small
compared with the body radius r and that the fluid be composed of a
single constituent gas of arbilitrary proper=ies. Air may be assumed to
fulfill the last-named requirement if the rconcentration of its constitu-
ents are fixed (no dissociation).

The momentum and energy equations have been sclved for many cases
of laminar flows. Insufficient knowledge of the form of the turbulent
shear, heat transfer, and boundary-_ayer prcfiles has made analytic
solutions ¢f these equations Impossible fo» turbulent flow. With the
aid of certain empirical relations, howeve:", approximate sclutions to
the momentum equation have been cbtained. (See) for example, refs. 1,
3, and 5.) From these soluticns it is pos:sible to obtain local friction
and heat-transfer coeflicients, the latter being computed through use

c
of the Reynolds analogy NSt = E? which is valid for zero-pressure-

gradient flow with unit Prandtl number and constant wall temperature.
For a nonunit Prandtl number, the relation if altered to the form

c
Ngt = f(NPQ-E?. This problem has been treanted most recently in

reference 11.



A generalized relation between heat transfer and skin friction,
hereafter called the modified Reynolds analogy, may be obtained by com-
bination of equations (1) and (2) with the result

6 d<He* gﬁ 5%\ 1 due
C g1+ B e (1)

A similar modified Reynolds analogy was first derived in reference 6 and
has been used in references 4 and 7. Equation (4) reduces to the con-
ventional Reynoclds analogy for zero pressure gradient with an isothermal
wall and NPr equal to 1.

Application of the Stewartson transformation.- Mager has shown
(ref. 12) that the Stewartson transformation can be applied to turbulent
flow with unit Prandtl number and zero heat transfer in order to reduce
the equation of motion to its incompressible form. Where the Prandtl
number differs from 1 and heat transfer is permitted, the transformation
reduces the momentum equation to a form close to but differing from that
for incompressible flow. In the present analysis, a modified form of
the Stewartson transformation is applied to the momentum equation and
the modified Reynolds analogy relation,

The transformation used herein is given by the following relations:

L1/2

X(x) = fx pr“l”(E) x (5)

0 Poko\lo

n\1/2 py
= [_€ B
Y(x,y) —-<ho> \/; S dy (6)

= (%l/eu (7

he

<

The subscript r refers to conditions at some local reference
within the boundary layer. The subscript o refers to conditions at
some arbitrary reference location cutside the boundary layer. Also,

Ppby = £(x)

Constant

il

Poko



10

From the definition of the thickness functions (6 and ) and the
relation between the transformed and physical normal coordinate (eq. (6))
the following relations may be obtained:

P~ h 1/2_
6 = _9<_9> 8 (8)
Pe \Pe
i/2
0 - 2] & (5)
e\
where
"y U . AW
5 = =—[1 - =\ay = -—l——\d—— (10a)
v/-(‘) Ue( Ue) % (6] Ue( Ue/ (AU>
"y B* Ly . /Y (100)
P = d/ —1 - —|dY = &y _ - —jd[= 10b
0 Ue< He™ o Ve B/ \By
o)
h.\1/2 u
e p
= (= = dy = (Y) (10c)
R <h0> j:) Po U=Ue
n\1/2 °H o
G AA TR
In a like manner, the displacement thiciness &% is written as
oo o\ /2 v oo P
8% = —O<-3) 5, - j (1 - _E>dy (11)
Pe he 0 p
where
glsfm L - -jay (11a)
0 e

In order to account approximately for tre effects of variable spe-
cific heats, the following linear relation between density and enthalpy
is assumed to be valid:

P h
1l - 7? = a,é.-»5;> (12)
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where o is a constant adjusted so that equation (12) is exact at the
wall., Fay and Riddell (ref. 13) used a correlation formula similar to

i
equation (12) but including, in addition, a term in ( - é%) . The

coefficient of this added term was small compared with a, and that term
is herein neglected.

Combination of equations (8), (11), (12), and the definition of
total enthalpy

] 2
u(x,y)
H(x,y) = h(x,y) + L——Q—J- (13)
yields
1/2 * 2
p./h — H - u - -
5*=—°—°> 5wt § ol (5 40 (1ha)
pe<he 1 he 2 2he( >
* B u.2 H.* & u 2
NS (R S (14)
8 9 Zhe he ¢ 2he
where

.’I:

e o]
= Y
) f __. J 1 -5 jafL (1he)
2
O AR ( e

The momentum equation (eq. (1)) and the modified Reynolds enalogy
(eq. (L)) may be transformed to the Stewartson plan through the use of
equations (5) to (14). 1If the energy equation outside the boundary
layer is

[2e(x)] 2
ho(x) + ———=— = H, = Constant (15)
2
the momentum equation is
— b J—
= 5, u 5 H au _
L | P 1% + —(a - 1)[1 + :; - — :? 1 _e,id&lF.
9 e 6 He 7§ |Ue &X r dX

Cr PoMo Eg (16)



12

and the modified Reynolds analogy is

-_— = W — -
% Pe Pobo _F°f PokoPe, 5] 1 e 1 a(F/6) [lf’_l

_ [ ' - = +
PeUeHe™ Py Pripr 8 2 pruy pg He* ¢X 9/6 & 0
2 5 E*E au
u .
—(e—(a-l)l+-—l)-a1e——_2-i—e (17)
2He ] Ee 7 |Ue &X

Equation (16) takes on a form almost like the incompressible form
with the definition of the transformed friction coefficient Ef as

_c_f = _C_f .___pouo _€ (18)

The transformed friction coefficient is related to the transformed waell
shear T, by the definition

Cr Tw

(19)

e Pole

no

Combination of equations (18), (19), (6), ani the definition of the
friction coefficient in the physical plane <cf/2 = Tw/peue2) yields the

following relation between wall shears

T, = T (20)
Py v

w

31 =2
o

¢]

In an analogous manner, the transformed heat-transfer coefficient is
defined as

a’w’ = Qv _DE ?O'J'O (21)
PoUeHe™  PeueHe™ 0o iy
The heat transfers in the two systems are related by
1/2
- PoMo (1
g, = —2[=2] q, (22)
Prir \lle

Substitution of definitions (18) and (21) in:o the transformed momentum

equation and modified Reynolds analogy (egs. (16) and (17)), respectively)

reduces these relations to their final general form.
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The momentum equation is

— = 2 = * 5 =
o} u, o} H.™ B au _ C
g.{. 2+____l+_e__(g,-l)l+__rl ..a,__e____e..L_E.g.lir. e=_f
dx 9 2He 9 He T8|Ue d&X r dX 2
(23)
and the modified Reynolds analogy is
_ aw _9 E{ . 1 O, 1 a(9/8) _
PUcHe* § 2 Ho* dX 9/ ax
81 e lj He 8o| 1 dUg
1+ =+ —[1+=|(a -1) -a = =|= 2 (24)
6 2He< ) He 7§ |Ue &X

Equation (25), even for constant specific heat (a = 1)}, is not in
general equivalent to the incompressible momentum equation because of
g2 He* 1 dUg ;
the presence of the term |- = = =~ —=]. For unit Prandtl number
T He Ue dX

with zero heat transfer, Hg* vanishes; thus, the coefficient of the

o)
velocity gradient term would take on its incompressible form 2 + -1

in that case.

The present analysis for axisymmetric flows can be specialized to
the two-dimensional case by considering r as a constant and dr/dx = 0;
thus, r 1is eliminated from the momentum equation.

Relation between total enthalpy and velocity profiles.- In order
to solve the system of equations outlined in the preceding section, it
1s necessary to specify velocity and total enthalpy profiles and a fric-
tion law, but it is desirable to investigate first a relation between
total enthalpy and velocity profiles which should have rather general
significance.

For the special case of zero pressure gradient, unit Prandtl number ,
and an isothermal wall, the Crocco relation between total enthalpy and
velocity is valid. This equation is

H=2a+ bu
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Boundary conditions at the wall and stream ¢ive the specific relation

Pressure gradient, nonunit Prandtl number, #nd nonisothermal wall will
each probably alter this relation. In reference 11, for example, with
the assumption of nonunit Prandtl number in the laminar sublayer, the
total enthalpy is found to be a quadratic function of velocity in the
sublayer.

Dennison assumed the validity of the quadratic relation
H=a+ bu+ cud (25)

for the case with nonzero pressure gradient but with unit Prandtl number
and isothermal wall, The coefficients of tle velocity terms were found
to be functions of the local pressure gradient and the heat transfer

was evaluated from the skin friction by usirg a relation analogous to
the modified Reynolds analogy of the present report. A multiplication
factor was then suggested to account for norunit Prandtl number.

Rather than complicate the present analysis by combining the Prandtl
number and pressure gradient effects into tle enthalpy-velocity relation,
the approach of the present report is to follow Dennison in assuming
that the Prandtl number is 1 and that equation (25) is valid through the
entire boundary layer. The coefficients of the velocity terms in equa-
tion (25) are then evaluated as functions of pressure gradient and wall
enthalpy. A correction to account for nonurit Prandtl number is later
introduced. Boundary conditions for equaticn (25) were such that at
the wall

y=Y=20
u=U=20
H=H,

and at the outer edge of the boundary layer

y =9
Y =A
u=ue
U = U
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The form of equation (25) and the second boundary condition require
equal velocity and enthalpy thicknesses, that is, &, =&y =% and

= Oy = A, This restriction is not seriocus since a unit Prandtl
number has already been assumed; thus equal or nearly equal thicknesses
are implied. Application of the boundary conditions to equation (25)
yields

* u.2 w.2 2
E_; =% - ¢ _2; +cC _E;<£L> (26a)
He Ue He*\ug
2 2
* u u, 2
B U e, e e (U (26b)
He*  Ue He* He* \Ue

Equations (26) are assumed to be valid independent of the type of
velocity profiles and the friction law describing the flow. A gualita-
tive check of their validity may be obtained by comparison with laminar-
flow results. Plotted in figure 1 are results of the similar solutions
of reference 1k for zero and favorable pressure gradients and cooled
walls. The quantity PB of reference 14 is a pressure gradient parameter
which is zero for zero pressure gradient and increasingly positive for
increasingly favorable pressure gradients. Plotted also is equation (26a;

U,
for various values of ¢ EE; from O to 1.0, values which also represent

e
zero and favorable pressure gradients and cooled walls. The quantities

2

u,

B and c ﬁ§; are not simply related to one another and the present com-

e
parison is intended as only a qualitative one. With this qualification
the two sets of curves in figure 1 show sufficient resemblance in shape
to lend support to the present approach.

With the aid of equation (26b) the thickness functions 5, and @

may be expressed in terms of integrals of velocity functions as follows:

1 u
— H* Y —
o} =A f l = — d<—> = 61 + C
: 0 < He*> A

1
U * \3(¥\ -3 e
U <l i *>d<Z) =8+c o (28)

azaf
0 e

2

|o
D@

(27)

%,

:n‘l::
X 1o
>|
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where
L1 .
XEAJ <——) 1-E-d(l> (29)
0 Ue Ue A
Definition of Z as
2 -
ch.ui__?\.
*3
yields the relations
5, o =
2-2,28 (30)
6 B A
9/6 =1+ 12 (31)

One more equation is needed to complete the formulation of the
problem. Equation (24) represents the relation between heat transfer
and skin friection in the transformed plane. Another relation between
the same two quantities, one which must be compatible with equation (2&),
may be derived from equation (26b) as follows:

Consider the derivative of enthalpy with respect to velocity from
equation (26b) evaluated at the wall. This relation is

<%>Y=O _ %(1 _ z%) (32)

The shear and heat transfer at the wall can, in general, be written
respectively, as

T, o= H ou (33a)
Y /y-0
7, - _k(@> - L(H> (330)
Y /y=0 Cp\c¥/y=0

because the apparent turbulent shear and heat transfer vanish at the

wall. The values of u, k, and cp are ncot here specified but apply

to a common location. The ratio of shear tc heat transfer is easily
obtained from equations (33) as



v ﬁ(i!)

and, since the Prandtl number has been assumed to be equal to 1,

- aw

PoUeHe™ _ Ue (gg) (31)
v He*\dU/y=0

poUe2

Combining equations (32) and (34) yields

Gy S cf
T B A
poUeHe* ( X)E (55)

Equations (24) and (55), each a form of the modified Reynolds anal-
ogy, are assumed to be equivalent., A differential equation for 2
results from this assumption. After substitution of equations (30)
and (%1) into the result, the following equation is obtained

5 dH* Ho* 5\ 1 @
Lah 8, LS (poy g Bl B We
g2 %/ H.* d&X

*

— +
H, 7Ug aX

A el (36)
Ho* dX  Ug aX
where
H & u 2 5 H* 8 H* 3
r=o+ ﬁE Li(a- 0|21 +.:¥> -2 t% - o — 24?
e 6 He ) He 8 e A
(37a)
* = B u 2 ) H.* &
A=l -14+a = Z-_9_-=I+Ew—tl-+(a_]_)_e_1+_} - & 1
He A He 2He 8 He 7§
(37p)
Note that T

is a functicon of Z but that A 1is not. Finally, by
using equation (30) the momentum equation (23) is rewritten as



18
= du - ¢
46, (r T, 1ary St (38)
r dX 2

Equations (36) and (38) form & pair of simultaneous nonlinear differ-
ential equations of the first order. The bcundary conditions chosen are
those resulting from the simple assumption cf instantaneous transition
from laminar to fully developed turbulent flow; that is, § = 8y,

Z =7 at X=X

The special case of constant specific reats yields the simpler
equations

z E— (39a)
by

(39b)
H

0]

1 ¥
He* X

order that the restriction to isothermal walls may be relaxed to include
Hw = Hw(x). The assumption is made that the gross effects of a non-
isothermal wall are accounted for in this eqguation without the necessity
of further modifying the enthalpy-velocity r:lation (26a) or the depend-
ent relation between g, and Cr (eq. (35)).

The terms in have been retained in equation (36) in

Application of a Simple Velocity Profile
and Friction Law

Assumption of power velocity profile ani friction law.- In the
absence of detailed knowledge of the turbuleit velocity profiles and
friction law for compressible flow about a bldy of revolution with
streamwise pressure gradient, certain assump.ions are made. These are:

(1) The effect of compressibility is completely accounted for by
the Stewartson transformation; thus, incompressible flow relations may
be assumed to be valid in the transformed plane.

(2) The effect of pressure gradient upo the veloeity profile and
friction law is negligible; thus, zero-pressure-gradient relations may
be used. The incompressible, zero-pressure-gradient relations chosen
for the present analysis are
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v, (z)l/n (40)

Ug A
- = -l/m
_;_‘ = Aﬂ(ﬁi&e.) (L41)

where A, 1s assumed to be constant. Velocity profiles of the form of
equation (40) have been observed in flows with pressure gradient. (See
ref. 15.) The Ludwieg-Tillman friction law of this reference is of the
form of equation (41) but with A, as a function of shape factor.
Since the shape factor is not altered seriously by favorable pressure
gradients but is a strong function of adverse pressure gradients, the
present analysis is limited to favorable and weak adverse pressure
gradients.

(3) The velocity profile and friction law (eqs. (40) and (L41),
respectively) are unaffected by the curvature in the axially symmetric
case so that these two-dimensional relations may be assumed to be valid.
With the assumption that the boundary-layer thickness is small compared
with the body radius, the local curvature due to the axial symmetry
would be expected to have a small influence upon the local friction law
because, locally, the turbulent exchange should far outweigh the momentum
change caused by the varying cross-sectional area. On these physical
grounds the assumption of no effect of body radius upon profiles and
shear law seems to be justified. Some methematical justification might
be seen from the following: If a turbulent analcg to the laminar Mangler
transformation were employed, equations (40) and (41) would be assumed
to be valid in the resulting two-dimensional flow. It can be shown
that such a procedure leads to an expression for the physical (three-
dimensional) friction coefficient equivalent to that obtained by the
present method, that is, the expression which results from combination
of equations (5), (6), (18), and (41),

l/m u —l/m
7o) B

PoMo Pe\te be

Thickness functions.- For the velocity profile of equation (40),

the thickness functions of equations (10a), (1la), and (29) may be
evaluated

f)
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. 2

A n+ 1

5. n ]

A (n+ 1L)(n+ 2

A d >

A (n+ 2)(n+ 3 (43)
§l _n+2

[ n

5_n+3

X n+ 1

Differential equations.- Equation (41) is substituted into the
momentum equation (38) and, after some rearranging, the result is
1
ml ‘ w1 -=
dx m J\U. dX r &X Com kg

e

The modified Reynolds analogy equation (36) becomes

-
p U m___ - dHg _*
%z%(oe) ®) m<l+i)+_l_ "

dx Ho X Ho* d&X
H.* 5 au dif.* du
P-1-g-28\1 "¢, 1 e A "e_, (45)
He 3/Ue aX Ho* X Ue &X
m+1
The dependent variables are now (9) m anc. 2.

Nondimensionalization.- Equations (44) and (45) may be made dimen-
sionless with respect to the constant reference conditions pg, ¢4,

Moo ho, and a constant reference length 1. Dimensionless quantities
are then, for example,
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- ’2h0 —-e_po "‘I‘_|-‘-O
h
h E—e— E-I—. EE
= " hg S D
X x 1/2
E=7 fo ity (Be) T
Equations (4k4) and (45) become
1
de , fm+ L\(T dUe + L E§ 8 = m+ 1y ) m (46)
dg m U de r de ™ m (_E
L
u,) ™ 3 dH_* H dy
d—Z+zAm(‘e> 1+ 8y 2" _ro1.g = 8\
dg e by He* dg He AN/Up dE
1 et AW (47)
Ho* de U, at
where
ml
_ (8 m
®=<’i> <NRO) (48a)
o) 2h.1
NROE—O—O- (h—8b)
Ho

The quantity © is a "reduced" momentum thickness, and the Reynolds
number dependence of the equations is implicit in its definition and the
Reynolds number enters these equations in no cther way. Equations (h6)
and (47) are nonlinear differential equations through the dependence

of the quantity T upon the dependent variable Z. Step-by-step numer-
ical solution is required and the solution is hereafter termed the
"exact" solution.
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Evaluation of Skin Friction anc¢ Heat Transfer

When the momentum thickness parameter © and the factor Z have
been computed, the skin friction and heat transfer may be obtained as
follows: Combination of equations (41) and (48) gives

1 1 1

Ef 1 _ “m m+1
2 {(Np o)™ = An(Ue) ™) (49)
In the physical plane, from equations (18) end (L9),

€ 1 1l o, o

Ce, -z =P
L) BT = ) o) T o
-

Then, for unit Prandtl number, from equatiors (21) and (35)

a4y —1 7\ & tr| Cr =T

L i)™ = (1 -z D)2 Ly VT (51)
PeugHe™ 1 A be

For Prandtl number other than one, the enthelpy driving potential for

heat transfer is Hg, - Hy, and this substitution for Hg* in equa-

tion (51), along with the empirical Prandtl number correction, gives
the result

L = e u_|c L
Nst (NRO)IMl = (1 -Z %)(Npr) -2/3 Eer{?f(NRo)ml}
1
- -2/3|¢ —_
- (1 - Z_%)(NPI,) / %(NRC))nH’l (52)
where
= -qw
NSt ) peueHaw*

Special Cases

Solution for Hg* equal zero.- For the case Hg* equal to zero

with arbitrary pressure gradient and constart specific heats, equglrI M
tions (46) and (47) may be solved in closed form. The term ﬁl; _Ef_
e
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in equation (47) appears to be indeterminate but may be seen to be zero
since for any constant value H # Ho this term is identically zero

regardless of how small the difference Hg - H,; = Ho* 1is allowed to

become.

The differential equations describing this flow are, from equa-

tions (37), (46), and (47),

du a L
ae m+ 1\/I "= 105} m+ 1 “m
i )(U‘ ol ;d—§>@ - (") (%) (53)
—e —
-x
m = du au
4z ., 4 fﬂigél__ 1+ g}}- (r-1) Fel _ A e (54)
de C) X Qe de ue ds
_o4 01
=2+ = (55a)
6
R
A=14+ Tl =D -1 (55b)
0
, 5, [)
The thickness ratios — and = were evaluated for power profiles
B A

and are given in equations (43). Since n was assumed to be constant,
these ratios, I, and A are then constant, and equations (53) and (54)
are linear and may be integrated in clecsed form. The momentum equa-
tion (53) may be written after some manipulation as

mtL ml  D(m+l)-1
m

k) e )

(56)

Equation (56) is integrated to give
m1 ¢ ml  r(m1)-1
(rg P) i L, @7 () T
¢ s m+ 1\, v m ISt
© =% —_——__ZQEi * Am( m )(Qe) " m+1 P(m+1) -1
rUeF> n (r) n (ge) "

(57a)
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In the special case ©; = &; = 0,

A

3 ml P(mel) -1

1 (o) ™ (u) "
_ m+ 1 “m JO
© = Am< m >CLQ mt 1 (m+l) -1 (57v)
m /.. m
(x) * (L)
The modified Reynolds analogy equation (54) is of the form
du
az | Zfl(g) I 4 S
a U, dt
and the solution is
- [e(e)ae| o [£(e)a du '
Lol ejefL(g)g(A__e)d“K (58)
. ye de
where
Y
An(Ge) "1 5\ ro1 e
p(g) = 2 [1 4 8. e
C) Y ge de

In general, the integral Lffl(ﬁ)dg will lave to be evaluated numeri-

cally after completion of the sclution of the momentum equation. For
the special case Oy = £, = 0; however, the solution for © yields

ml  D(m+l, -1

MU T @) T s
2 m+ 1 3 m+1 D{m ) -1 m+ 1 dae
J; ()™ (g) ™
where
m+l M(m+l) -1
F = F(¢) = fog () ™ (u, mae
Then

\/ fl(g)dg = G_+-§§(m T l)loge r - (r - l)loge U,
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and

L1+ Ei
effl(ﬁ)dg - (F)HH-l< )\)(U )'(F"l) (59)

-e

Equation (59) is substituted into equation (58) and the following equa-
tion is obtained:

i B
m )
r-1 I T
’ (Ue) _ (F)m+1< x)<UA Z_guﬁ,) a4 K (60)
m £ -1 \=e
SCalady VRN ﬁ

The constant K must be set equal to zero in order that equation (60)
leads to a stagnation-region solution consistent with that developed in
the appendix. The limits on the integral are set from zero to ¢, which,
in conjunction with K = 0, allows Z to approach zero as expected far

dyu
downstream on a blunted cylinder or cone as —= approaches zero.

dg

The final result is

£ _m_<l+ E)
i (H )F-l m-1 A
7 = me

(A Lo os (61)
T

Equations (57b) and (61) provide explicit solutions to the momentum and
modified Reynolds analogy equations for the case ® = & = 0 for

He* = 0, which, for unit Prandtl number and recovery factor, corresponds

to an insulated wall.

Other special cases.- The special cases of the flat plate, the
cone in supersconic flow, and two- and three-dimensional stagnation
regions are discussed in the appendix. The stagnation-region solutions
have value in establishing initial conditions for the complete solution
of equations (46) and (L47) when the flow is assumed to be turbulent from
the stagnation point. The results for two- and three-dimensional stag-
nation regions are given in the appendix (egs. (A10) to (A15)) and plots
of the variation of 2, with the cooling ratio Hw/He are shown in

figures (2a) and (2b) for a = 1, m=1.4, and n = 7. Although the
results (eqs. (A10) to (A15)) are also valid for heated walls Hw/He > 1,
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only the cooled-wall results are shown. For stagnation flow, the reduced
m-1
momentum thickness © varies directly with ¢ ™ » Or in the physical

plane, 8 varies directly with x™*.  The momentum thickness at the

stagnation point is zero, a consequence of the assumed relation between
¢y, and 6. The term 2Z is independent of x 1in the stagnation region.

Approximate Solution

The special case of flow with pressure gradient but zero enthalpy
difference H,* was shown to give simple clised-form solutions for

®y =&y = 0 and constant specific heats. (3ee egs. (57b) and (61).)

An approximate method for the general case baised on this special case
is now developed.

The nonlinearity of equations (46) and (47) is caused by the depend-
ence of T upon Z. (See eq. (37a).) Figure 3 shows plots of the
variation of TI' with cooling ratio HW/He for various values of Z

with a =1 and n = 7. The upper limit of 2 of 0.8 was chosen since,
for this value, the Stanton number is zero for a finite friction coeffi-
cient. (See eq. (52).) A value of Z 1in excess of this maximum would
imply heat transfer in a direction opposite o0 that of the heat-transfer
potential Hy,,*, & behavior not expected on physical grounds except per-
haps where Ho.* passes through zero. Figw'e 3 shows that I’ is not

a strong function of Z for given Hy[He. For Hw/He approaching

zero, the dependence is a maximum; for unit Hw/He, the dependence dis-
appears. Similar behavior would occur for hot walls (Hw/He > l.O) and

nonunit a 1s not expected to alter this dependence seriously.

The approximation assumes that I is given by equation (57a) spe-
cialized for an average value of Z equal to O.4. Thus,

*

31 =]
>| ol

6 ) He ) e

2 . *
(F)Z=O.hsf=2+%§}-+(a-l) :_eH:<1+%>_E_51 - O.hq e

(62)

Equation (62) is assumed to be correct for ar arbitrary value of n.

The momentum equation (46) is linear with T substituted for T and
= au

may be integrated upon the neglect of %% with respect to 3%2' The
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T d
dl' js seen to depend upon _£§§1§§2 and gg, both of which

at E
du
are assumed to be small, Because EEQ approaches zero downstream on

derivative

blunted cylinders or cones, the approximation may fail in these regions.
However, with this assumption and some manipulation, equation (46) is
rewritten as

_ L ml  T(ml)-1
i R T T i e

ag \""e m

which is identical to equation (56) except for the substitution of T
for T. Solutions are therefore given by equations (57a) or (57b) for
appropriate initial conditions with I replaced by T.

The energy equation (47) is solved in the same manner. When T
is replaced by I', equation (47) becomes a linear differential equation
of the form

g_z. + 28 (8) = £,(8) (64)
3
where now
-1
y) ™ dH_ * H* =\ . au
£, (¢) =Am(_e) <1+%> _l: e _(F-1-a-28)1 ==
e A H* dg e A Qe £
(65a)
_ A e 1 dHg¥
2080 = 3 T (65p)
-e

The general -solution is
-|f d f d
Z=e f 1(8) g[fef 1(8) g1"2(§)c1§ + K} (66)

As in the special case, equation (66) must be evaluated numerically for
arbitrary transition because of the form of the function 6 (eq. (57a)).
For the special case of ©; = £; = O, however, a simple analytic solu-

tion may again be derived. Thus, when the method used in the case
Ho* = 0 is followed here, the result is
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T-1- %—g g . _rgI<l+__§_}
7 = (ue) A He (7)™ X;(gL dge 1 dHei) t
3 — * =\U_ d&  B.* de
e Faage bre® %
e oy

(67)

In the interest of simplicity, the case of arbitrary transition
(egs. (57a) and (66)) for the approximate sclution will not be consid-
ered further. The approximate solution is given by equations (57b)
and (67) and is therefore restricted to the initial conditions
B = &t =0, Zt = Z, or fully developed tirbulent flow from the

leading edge.

Stagnation-region solutions for the aprroximate case may be cbtained
from equations (57b) and (67). For a three-dimensional stagnation
region,

-1 o-1
a m m
e = Ay ° __(ﬁl2 (68)
P Ea m
(-rEr)o FO + T
A
o]
Z=Z0= _ (69)
Lral2) 24T &y 20 , 8
He Jo A A m+ 1
and for a two-dimensional stagnation region,
a
P T =
(Bt)y o2
Z=12 = Yo (71)
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The three- and two-dimensional stagnation values of 2, as given by

equations (69) and (71), respectively, have also been plotted on fig-
ures 2(a) and 2(b), for a =1, n=7, and m = 4 and do not differ
significantly from the appropriate (negative root) values for the
"exact" solution evaluated in the appendix.

For clarification of the two methods discussed herein, a summary
is presented in table I.

Reference Conditions

The constant reference conditions Pos Hy have been used as the

pertinent properties for the flow in the transformed (incompressible)
plane. This "incompressible" reference is assigned to the stagnation
point in the case of a blunt body and local stagnation conditions for
bodies with sharp leading edge. This requirement specifies isentropic
flow along the body streamline in the inviscid flow for the latter case.

The reference conditions in the boundary layer Pr, MK, Bare some-

what more arbitrary. The original transformation (ref. 9) for laminar
flow used the relation pu = 1, whereas reference 1k used the wall con-
ditions py,u,. The choice of reference conditions in the laminar case

influences the form of the transformed equations but not the solutions
in the physical plane (except through the viscosity law chosen), since
the solutions do not depend upon any assumptions as to the nature of
the flow in the transformed plane. Because the turbulent solutions
depend upon the assumption that incompressible relations are valid in
the transformed plane, the reference conditions need to be carefully
specified as follows.

T method.- If the laminar shear at the wall was considered and

W
then transformed, this would give

B du
= M3y

o e |, (o0
Poko Ny O\OY/y

(72)

]

If the quantity “o(§g> were interpreted as the transformed wall
Y /w
shear T,, then equation (72) would be
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pu.h
Tw = Dsu: . (73)
e

lo

w

=g

Comparison of equations (73) and (20) indicetes that the reference con-
dition, for this interpretation, must be the wall condition. For the
flat plate this comparison gives, from equation (A6),

m

monel
1 1
Se o (Puba\ T e (74)
Cr Pele Ho

T' method.- In reference 16, an interrnediate temperature method
for turbulent flow is described. This method has been adapted to the
flat-plate inverse power friction law as foi.lows: Assume

Tw b'u X -
cp' = =K
i 5 1 '
u M

1
5 P'le

where K; 1is the coefficient of the equiva’ent incompressible law and

p' and u' are evaluated at an intermedia.e temperature T'. Then
L m 1
! p_u_X m+ 1 3t m-1 el
Cf = Cf' B_ = Kl e € .‘)_ E—)
Pe He Pe He,

If for incompressible flow

-t
_ puex -
ce = K
Then at the same Reynolds number
_m_ —
c A+l vm-1
£ _ (e L (75)
cr Pe He

The intermediate temperature is given for a .r by reference 16 as

H

I

, T
= 1+ 0.055M,° + 0.45 TE - 1) (76)

e e

+3
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The wall reference method (eq. (74)) is compared with the inter-
mediate temperature method (eqs. (75) and (76)) in figure (4) by means
of plots of the variation of cf/Ef with Mach number for wall-to-

stream-temperature ratios of 0.2, 1, and 5. For this figure it was
assumed that the surface was at a temperature of 1,500° R for all Mach
numbers, a fairly realistic condition for a reentry vehicle. Values of
y of 1.4 and m of 4 and the Sutherland viscosity law were used. For
this case it is apparent that the two methods are significantly
different,.

The same two methods are compared for the insulated wall case in
figure 5 with a typical wind-tunnel condition imposed, namely, To

equal to 540° R. A recovery factor equal to (NPr)l/5 was used with
Np,. equal to 0.72. Also shown on the figure are the experimental data

of Coles (ref. 17) and Chapman and Kester (ref. 18) taken from refer-
ence 16, There is some tendency for the data to support the T' method
over the T, method. Further support for use of the T' method is

found in data recently obtained by Tendeland (ref. 19) for flow with
heat transfer.

The assumption is now made that the flat-plate T' method is cor-
rect for arbitrary pressure gradient. The reference conditions for the
present method are computed by requiring the equivalence of the T
compressibility correction to that of the present report (eq. (A6)).
The result of equating equation (A6) with equation (75) is

' y1/m
Prir _ 0_(“ ) / (77)

PoHg  Po\Mo

with p' and p' evaluated at T' (eq. (76)). However, for complete-
ness, the Tw method, given by equation (74), obtained from

PrHy _ Parhw (78)

Poto  Poko

is evaluated as an alternate.
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RESULTS AND DISCUSSION

Method of Calculation

Equations (46) and (47) for the "exact" method and equations (57b)
and (67) for the approximate method were solved for various configura-
tions on the IBM 704 card-programed computer at the Langley Aercnautical
Laboratory. In order to simplify the progrsming, the equations were
rewritten with the physical dimensionless ccordinate x as the independ-
ent variable as follows:

dU L _1
4@  fm+ 1\/T 1 dr m 2 m
— — —+ = — 0 = —_— h U
. < - >(§e — 2@)@ Am< >9r*ir<—e> () (79)
1
T L ~
o, el BB,
> o )T T R
Ho* = du dH_* dau
ror-at il el LIS 0T o (g
Be 7JUp dx | H* ax U, ax
for the exact case, and
m+ 1 -+ F
® = uy)nm = 81
Am( m )(—e) m+ 1 F(m+1)-1 (81)
@™ (L)
* a —
T-1-a 3_9-& X _m_<l+ B
U e A m+1 / \
(%) H_*(F) <A_ aw, dHe*)
) — H* =\U_ d H.* 4
—Irl~(l+—9- T-l-q oo— £.\© % € %
UH‘l\ ?\ Te— '}
(82)
for the approximate case where
X m+ 1 T(m+1) -1 /
— - m i \ 1l/2
F - jo (0™ (u,) (2,0, () M/ ax (83)
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Because all available data were obtained in the moderate tempera-
ture regime, the program was specialized to the case a =1 (constant
specific heats) and flow properties outside the boundary layer evaluated
in the program from the pressure distribution by simple isentropic-flow
relations with constant 7. The viscosity was assumed to be given by
the Sutherland law

p3/2
W T3 198.70 ®

The program was arranged for arbitrary selected values of the constants

Ap, m, n, 51/8, 8/X, and Np,.. The enthalpy recovery factor m,
was assumed to be equal to (NPr.)l/5 and the enthalpy difference Hg,*

was computed from

gﬁw>

Haw = He<ge *pdeT - He
For purposes of comparison, both T' and T, methods for computing
compressibility effects were included in the program.

Unless otherwise specified in the subsequent discussion, the fol-
lowing constants were used:

Blasius law:

Ay = 0.013 m=14
l/7th-power velocity profile:

n=7

col'gl
|

g \\e}

>l
|

=0

1.b  Npp = 0.72

<
1

Determination of Effect of Initial (Transition) Conditions

In order to determine the effect of various transition conditions
upon solutions of the "exact" equations, the discussion which follows
assumed instantaneous transition from laminar flow at some location X

For this discussion, the reference temperature as evaluated by the
T' method (egs. (76) and (77)) is used.
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No exact transition boundary condition:s are known. One reasonable

conditions is to assume that momentum is corserved; thus 81 aminar
equals By .y pylent 8t Xy An analogous procedure to determine Zy

is to conserve the enthalpy convection thickness @. The purpose of
figures 6 to 12 is to indicate the degree tc which the results are
affected by various transition boundary conditions.

q
In figures 6, 7, and 8 are plotted 6/1, Z, and 7 ¥ respec-

w - Taw
tively, as computed for a hemisphere in a M = 5 stream. The test is
reported in reference 20 as run 57. Transition was assumed to occur at

Xp = 0.4, 0.6, and 0.8 with (%>t chosen as equal to the appropriate

laminar value (computed from the similar solutions of ref. 14 by using
a technique similar to that of Stine and Wanlass (ref. 21)). The term
Zy was allowed to vary for each value of Xy For each X the choice

of Z; has little effect on the solutions for Z and qw/<Tw - Taw)
except in the immediate vicinity of X . There is no noticeable effect
upon 6/1 at all.

The choice of b 5 and (%) has greater influence upon the results,
t

ag may be seen in figures 9 to 11. Since thz choice of 2y was shown
to influence only weakly the solutions for given X, and (%) , for
t

these three figures Z; was set equal to thz value of Z at x equals
X obtained from the solution for the stagnition initial conditions

(Et = (%)t =0, Zy = Zo) which are also shovn in figures 6 to 12. For
given x,, the choice of (%) strongly aff:cts the solutions locally,
t

the effect diminishing downstream. In addition, increasing Xy increases
the effect of varying (%)t; that is, the effect is felt further down-
stream, as expected.

The data obtained in reference 20 appea- to favor the solutions
with large (%) with Zy fixed near x ¥ 9.8 and to favor the solu-
t

tions with (&) = (& at x; = 0.6 and 0.8 in the region
1 ) t
t laminar

x> 1.0.
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The results of similar calculations for heat-transfer coefficient
on a flat-faced body are shown in figure 12. The conditions are those
of run 61 of reference 20. Transition was assumed to occur at x = 0.2,

0.4, and 0.6 for various values of (%) . Because of the previously
t

shown negligible effect of Z{, the values of Z; were chosen in the
same manner as for the hemisphere (figs. 9 to 11). Figure 12 shows the
same behavior for the flat-faced model as found for the hemisphere,

that is, the effect of (%) decreases with increasing x and, when
t

X = 0.2 or 0.4, does not appear to be important a moderate distance
from the assumed transition point. The experimental data for this flat-
faced body are plotted in figure 12 and appear to favor transition at

X, equals 0.k with (%)t equal to 0.00072 or 0.00108.

Some investigators have advocated starting the turbulent calcula-
tion from the stagnation point with finite initial momentum thickness.
(See, for example, ref. 5.) They reason that a nonzero boundary-layer
thickness must exist at a stagnation point, such as the laminar value
which is easily calculated. ©Solutions for the present method were
obtained for a wide range of (%)t for X4 equal to zero for both
spherical and flat-faced bodies. These results showed that the perturba-

tions in (§>, Z, and qw/(Tw - Taw) caused by the nonzero <§>t die

1 1
out extremely rapidly and are indistinguishable from those for (%)t =0,
X, = 0, downstream of x = 0.25. These results have not been shown in

figures 9 to 12. Since the flow in the region close to the stagnation
point is expected to be laminar, it must be concluded that for all
practical purposes the assumption of finite (%)t at the stagnation

point for the present method is practically equivalent to the assumption
of zero (§> .
1/t

Figures 6 to 12 show that the "exact" solution started at the stag-
nation point fairly well represents the solutions begun at an assumed
transition point, particularly for early transition. Therefore, this
solution is useful when the location of transition is unknown. However,
use of stagnation-point initial conditions does not imply that turbulent
flow exists over the whole surface but merely assumes that the turbulent
flow downstream of transition is approximately equivalent to a hypothet-
ical turbulent flow which originates at the stagnation point.
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Comparison of Present Method With Experiment

Results of application of the present nethod are shown in figures 13
to 19 corresponding to experimental data presented in references 20, 22,
and 23. Both exact and approximate solutiors were evaluated with the
calculation restricted to the isothermal-wall case. This condition was
very nearly met in all the experiments discussed. The values of Hw/He

chosen were approximate means of the local values and are indicated in
table II, a summary of the experimental data used in the figures. 1In

all cases the experimental pressure distributions presented in the refer-
ences were used.

The exact method was evaluated for stagnation initial conditions
(Et = @t =0, Zt = Zo) and, for one transition case in which Et was
chosen from the experimental data, 8y was assumed equal to the laminar
value and Zt was arbitrarily set equal to its value at X =X

given by the solution for stagnation initial conditions. Use of stag-
nation initial conditions was implicit in tha2 approximate solution.

as

Plotted in these figures is the variation of the heat-transfer
Gw

coefficient with the dimensionless surface distance X = %.

w aw
The reference length is the body radius for <he hemisphere and flat-
faced body of reference 20 (figs. 13 and lh) and the hemispheres of ref-
erence 22 (figs. 15 and 16), and the nose raiius for the sphere cones of
reference 23 (figs. 17, 18, and 19). 1In each case the (a) parts of the
figures correspond to the T! method, and tie (b) parts of the figures,
to the Ty method.

Examination of the figures reveals the 'ollovwing:

(1) In general, the results using the ' method for cf/'éf are

slightly higher (generally less than 5 percent higher in the peak heating

region) than those with cf/Ef given by the T, method. The data show

a slight preference for the T' method.

(2) The approximate solution gives results within 5 percent of
those of the exact solution using stagnation-point initial conditions.
Neither of these methods predicts completely the experimental data,
although most trends not too close to the trensition region are satis-
factorily predicted.

(5) The exact solution with transition initial conditions predicts
the measured peak heat-transfer data within epproximately 10 percent in
those cases where transition appears to have begun upstream of the
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theoretical peak (figs. 15, 18, and 19). In figures 15 and 18, the
location of the theoretical peak is slightly upstream of the experi-
mental location. When transition appears to have begun close to the
predicted peak heating region (figs. 13, 16, and 17), agreement at the
peak may be elther good (within 15 percent, fig. 16) or poor (figs. 13
and 17). In these three cases the peak heating data are thought to be
transitional.

(4) Downstream of the peak heating regions agreement is generally
within 10 percent except for the extreme downstream locations where
heating rates are low and percent differences between theory and experi-
ment tend to increase (figs. 13 and 15 to 19). An exception is the flat-
faced body where the predicted heating rates are 20 to 25 percent greater
than the experimental rates over the entire face.

(5) Using a transition initial condition in preference to stagna-
tion initial conditions generally improves or leaves unchanged sasgreement
between "exact" theory and experiment except in two of the cases where
the peak heating data are thought to be transitional. (See figs. 13
and 17.)

In regard to these comparisons, caution must be exercised in quan-
titatively comparing data and theory as a 10 to 20 percent uncertainty
is common in heat-transfer measurements. The question of choosing tran-
sition conditions for the present method leads to further uncertainty.
Although the technique of requiring conservation of momentum thickness
may appear to be logical for an instability-induced transition, a
roughness-induced transition might suggest a discontinuous momentum
thickness. Filgures 11 and 12 demonstrate how transition with et

larger than 6,,,.i0a ©8n lead to better agreement between theory and

experiment for the same data as in figures 13 and 14, respectively. In
both of these cases, transition may be roughness induced. (See ref. 20.)

Comparison With Other Methods

Comparison with Dennison's method.- The method of Dennison has
been evaluated for the seven experimental configurations previously
discussed. A simplified form which Dennison states is valid only on the
forebodies of blunted cones and cylinders and invalid far downstream has
been used along with a Prandtl number correction in the modified Reynolds
analogy suggested by Dennison and used also in the present analysis.
The results are shown in the (a) parts of figures 13 to 19 in each case,
although Dennison's method is not dependent upon a reference-temperature
compressibility correction. The comparisons made in the following para-
graph refer only to the present T' method and Dennison's method.
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The method of Dennison appears to pred.ct heating rates about as
well, in general, as does the present method with stagnation initial
conditions. The present method with transition predicts the peak heating
rates much more accurately than does Dennison's method for the configu-
rations of figures 15, 16, 18, and 19. For the hemisphere at M = 5
(fig. 13) and the sphere cone (fig. 17), the Dennison predictions are
closer to the peak heating rates than the present solutions, which over-
predict the experimental peak heating rates However, these measurements
appear to be in a transition region. Heating rates on the flat-faced
body at M =5 (fig. 14) are predicted by Dennison's method with excel-
lent accuracy.

Comparison with incompressible flat-plate formula.- In order to
provide a familiar reference curve in figures 13 to 19, the heat-transfer
rate was computed by using the Blasius incoripressible flat-plate law and
Reynolds analogy with the assumption of no effect of compressibility
upon skin friction. The equations are

%11 = 0.0296(Ng)

2

Qy \'3 Cyp
m——— = CpPele(Npr -
Ty - Taw P ( ! 2

The results of using these simple relations are also plotted on the
(a) parts of figures 13 to 19. This method. however, is independent of
compressibility.

Although these results agree with the riore complete results of the
present analyses as well as with Dennison's method and data in some
regions, differences are rather large over rniost of the surfaces. The
occasional agreement is the result of compersating effects. The present
method includes the effect of the favorable pressure gradient upon
momentum thickness in the momentum equation. This tends to increase the
skin-friction coefficient over the comparable flat-plate value. On the
other hand, the effect of pressure gradient upon the Reynolds analogy
factor is such that the ratio of heat-transier rate to skin-friection
coefficient is reduced below the comparable flat-plate value. 1In some
regions these effects approximately cancel end agreement between the
pressure gradient and flat-plate solutions results, particularly for the
flat-nosed body. (see fig. 14.) In other regions one effect predomi-
nates and the solutions do not agree at all. The compressibility cor-
rection factor included in the present methcd further alters the compari-
son. Because of this fortuitous part-time egreement, the incompressible
flat-plate method is not suitable for blunt-nosed bodies. In the fig-
ures discussed here, this method yields heat-transfer rates generally
higher than the data or the results of the yressure-gradient methods.
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The method of Bloom and Martellucci.- Bloom and Martellucci (ref. 6)
use the integrated momentum and energy equaticns to derive a modified
Reynolds analogy relation analogous to that of equation (4) of the pres-
ent report. This relation is used in conjunction with an inverse power
friction law, power velocity profile, reference-~temperature compressibil-
ity correction, and a relation between total enthalpy and velocity inde-
pendent of pressure gradient in order to obtain the heat-transfer rate.
The results of these calculations are not included in the present report
but were shown in references 4 and 6 to underestimate seriously the
turbulent heating rates on a blunt body. This behavior must be attrib-
uted to the form of the enthalpy-velocity relation used. By not including
the effects of pressure gradient in the total enthalpy profile, a modi-
fied Reynolds analogy factor qw/Tw which depends directly on velocity
gradient is obtained, which is analogous to equation (4) herein. This
relation shows that positive velocity gradients tend to reduce drasti-
cally the Reynolds analogy factor and yield low heating rates. When the
pressure gradient is included in the enthalpy profile, however, as in
the present analysis, the modified Reynolds analogy factor depends
instead upon an integral of the velocity gradient (for example, eq. (67)
for Z), and thus the effect of pressure gradient is reduced. This
result is apparent in the generally satisfactory agreement between meas-
ured heating rates and those predicted by the present method as shown
in figures 1% to 19.

Discussion

Choice of initial conditions for the exact solution and validity
of the approximate solution.- In a previous section it was shown that
the chcice of initial conditions at the transition point did not seri-
ously affect the predicted heat-transfer rates a moderate distance down-
stream of the assumed transition point. With no real knowledge of what
transition conditions to use, figures 13 to 19 show that use of stagna-
tion initial conditions can lead to reasonably accurate predictions of
the turbulent heating rates a moderate distance downstream of the tran-
sition point or region. It follows, then, that the approximate method
presented herein may alsc be very useful, in spite of the fact that it
requires stagnation initial conditions. Results of using this method
also compare very favorably with the experimental data.

If it is desired to utilize high-speed computing equipment im the
calculation of turbulent heat transfer by the present method, the exact
solution should be employed as it offers the generality of arbitrary
initial (transition) conditions as well as exactness (within the frame-
work of all the other assumptions). Where no such equipment is avail-
able, the approximate method offers a convenient alternative restricted
to stagnation initial conditions. One might improve the accuracy of
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the approximate method by a more judicicus choice of a mean value of Z
used in evaluating T (eq. (62)) but the need for doing so is not
apparent in the present results. Caution must be used in applying this
approximation, however, as it was derived by neglecting dZ/dg with
respect to dye/dg, a questionable assumpticn in the essentially zero

pressure-gradient downstream regions of blunted cones or cylinders. 1In
a subsequent section, this error is shown tc be small for cne case - a
spherically blunted cylinder in shock-tube flow.

An alternate friction law.- In order tc determine the effect of
changing the friction law, the heat-transfer coefficients for the hemi-
sphere and flat-faced bodies at Mach number of 5 (ref. 20) were com-
puted for the friction law

1
5 N
S _ 0.0065 <p°Uee>

2 Mo

given in reference 3 and attributed to Falkner (ref. 24). Results of

these calculations are shown in figures 20 and 21 for hemispherical and
flat-face bodies, respectively. Also shown are the results obtained by
using A, = 0.013 and m =4 (modified Blasius law) as in the previous

discussion, and the experimental results. Theoretical results are shown
only for the special case where the flow is considered to be turbulent
from the stagnation point (it =08y =0, 24 = Zo) for the exact solution

(T* method).

For a flat plate in incompressible flow, the modified Blasius law
is considered to be a good approximation to the Prandtl-Schlichting
logarithmic law for Reynolds numbers based on surface distances of from
102 to 107, and the Falkner law may be used to approximate the loga-
rithmic law for Reynolds numbers of from 106 to 1010, Approximate
Reynolds number limitations such as these may be considered to be appro-
priate for the calculation of heat transfer by the present method. For
the experiments considered herein, Reynolds numbers based upon local
external fluid properties and surface distance from the stagnation point
never exceeded 2.5 x 106; thus, the Blasius law should be appropriate.
Figure 20 for the hemisphere shows little difference in the two results,
although the Blasius result is slightly clos2r to the data downstream
of the transition region. Figure 21 for the flat-faced body shows that
the Falkner result agrees with the data very closely, whereas the
Blasius result averages about 20 percent high. This behavior remains
unexplained.

If it were desired to compute heating rates by the present method
to a body for which the local Reynolds number based upon surface distance
covered both of these ranges, the calculatioa could begin with the
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Blasius law carried up to an appropriate location and then continue with
the Falkner law for the remainder of the surface, with the requirement
that 6 and 7 were continuous at the "switchover point." The heat-
transfer rate would be discontinuous at this point but could easily be
faired to obtain a turbulent heating rate continuous in x.

Bloom and Martellucci (ref. 6) used an inverse power friction law
with A, equal to 0.006361 and m equal to 5.92, a law very similar
to the Falkner relation. They also claimed to have computed one case by
using a Blasius law (A, = 0.0128, m = 4) and, when the results were
compared, they found a difference of nearly a factor of 2. They appear
to have used a value of A, equal to 0.0225 in the actual calculations,

however, and its use would account for the discrepancy.

Validity of the approximate method in downstream regions.- The
accuracy of the approximate solution in the downstream region of a
spherically blunted cylinder was tested for a hypothetical shock-tube
situation. The model was assumed to be cone-half inch in diameter, and
the traveling shock was assumed to move at a Mach number of 6.5 relative
to the fixed wall and based upon the speed of sound of the undisturbed
air, which was assumed at room temperature (540° F) and a pressure of
4O centimeters mercury absolute. Local flow conditions around the model
were found by assuming a modified Newtonian pressure distribution;
stagnation conditions were computed from the charts of reference 25.

For convenience in computing the heat transfer, the flow external to
the boundary layer was assumed to be isentropic with 7 equal to l.2.
The wall temperature was assumed to be equal to room temperature, a
valid assumption for the short-duration tests inherent in shock-tube
use, and the computed stagnation temperature was 6,318° R.

Figure 22 shows a plot of the variation of the ratio of local heat-
transfer rate to stagnation heat-transfer rate (computed by the method
of ref. 13) for exact and approximate solutions with x = x/l, where 1
is the body radius. Only the T' method is shown, and only stagnation
initial conditions are chosen for the exact solution. Equation (76)
for T' 1is assumed to be valid independent of 7. The region x < 1.57
corresponds to the hemispherical ncse, and the region x > 1.57 repre-
sents the downstream cylinder. Figure 22 shows that the approximate
solution differs from the exact by less than 5 percent over the entire
surface considered, x < 3.0. This result is surprising in the region
where x > 1.57, since in this region the Newtonian velocity gradient
is zero whereas the gradient of Z 1is still finite. In obtaining the
approximate solution, dZ/dg was neglected as small compared with
dge/dg, an assumption which is not true for x > 1.57. This relative

insensitivity to the neglect of the dZ/dg terms in the downstream
regions somewhat widens the applicability of the approximate solution
presented herein.
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CONCLUDING REMARKS

A method for computing the turbulent heat transfer to bodies in
high-speed two-dimensional and axisymmetric flow fields was derived
from the integrated equations of the boundary layer. The derivation
utilized a Stewartson-type transformation of the equations, the assump-
tion of a quadratic dependence of total enttalpy upon velocity across
the boundary layer (in which the coefficients of the velocity terms are
functions of pressure gradient), and a compressibility correction for
skin-friction coefficient based upon flat-plate experimental data. The
method was applied specifically for inverse-power-law velocity profiles
and friction coefficients. Exact and approximate solutions were derived
for these differential equations wherein the exact solution was valid
for any initial conditions, and the approxirate solution required assump-
tion of a fully developed turbulent flow frcm stagnation point or leading
edge with appropriate initiaml conditions. A primary result of the
derivation was the existence, within the present assumptions, of a modi-
fied Reynolds analogy between heat transfer and skin friction for turbu-
lent flow, a relation which depends upon streamwise pressure gradient.

Examination of the exact solution for various initial conditions.
(representing a variety of transition values) for flow about a hemisphere
and a flat-faced body indicated that choice of the initial condition
would influence the result close to the transition point but that this
influence would decay in the downstream regions. It was shown that
hypothetical initial conditions at a stagnation point or leading edge
led to a solution which would satisfactorily approximate those solutions
with arbitrary initial conditions downstrear of their respective initial
streamwise location.

Comparison of the present results with availlable experimental heat-
transfer data on seven axisymmetric blunt bodiies showed genersal agree-
ment between experiment and theory, in most cases within the experimental
accuracy. Use of a transition initial condition in preference to a
stagnation initial condition tended to improve agreement between experi-
ment and exact theory except for cases where transition appeared to
begin in the region of peak predicted heat transfer. Results using the
approximate solution never deviated from those of the exact solution
with stagnation initial conditions by more than 5 percent.

The present method appears to be capable of predicting turbulent
heat transfer with sufficient accuracy for dzsign purposes, except per-
haps close to transition. Although the exact solution offers the gener-
ality of arbitrary transition initial conditions, the computation is
sufficiently involved to make desirable the employment of high-speed
automatic computing equipment. In the absence of specific knowledge of
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the transition phenomenon, the assumption of fully developed turbulent
flow from the stagnation point or leading edge still leads to highly
useful predictions in the region where the flow is actually turbulent.
With this assumption, the approximate solution has value in that it
lends itself to hand calculation with little loss of accuracy.

The present method is restricted to flow without dissociation.
Variable specific heats may be included in an approximate manner; how-
ever, no experimental data including this effect were available for
comparison.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Field, Va., September 30, 1958.
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APPENDIX

SPECIAL CASES

Under certain conditions, equations (46 and (47) may be solved
analytically. The case with He* = 0 1s treated in the text. Some

additional examples are shown in the following sections.

Flat Plate or Cylinder With Sharp Leading Edge,
Constant Specific Heat

For the flat plate or cylinder with shaip leading edge and constant
specific heat, the equations are simplified Ly the restriction

d
EES = %i =0, a =1. Equation (46) is integrated immedistely and the

following equation results:

m

© =8 + A.m<m * 1>(_qe)- “(& - §t) (Ala)

If the flow is assumed to be turbulent from the leading edge, that is,
8¢ = €+ = 0, then

3 (Alb)

The skin friction for an all-turbulent flow is found from equations (L1)
and (Alb) to be

n _1 .
z e 1\ mHfpcUgX | L
%o ()2 ) (‘ﬁ;‘) (2

One example of a friction law is the Blasius pipe-resistance formuls as
modified in reference 3 for which Ay = 0.013 and m = 4 and for which

equation (A2) becomes
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- o.oz96<p°UeX> (A3)

Ho

Vil

The modified Reynolds analogy equation for this case becomes

1
Am(g ) m - dH . * dH.*
az e <1+e>+1 He¥| 1 dEe*

EE + 2 G) b He* dE He* ae 0 (Ak)

which is an ordinary linear differential equation with © given by equa-
tion (Alb). This is of the form

dz _
a + £1(8)Z = £5(¢)

for which the genersal solution is

- e_ffl(é)diU‘effl(g)dgfg(ﬁ)dé + K]

The constant K may be evaluated by consideration of the boundary con-
ditions. When the simple case of constant wall enthalpy is considered,

dH* _ d(He - Hy)
ae ae

and a particular solution of (A4) is Z = O. This is the solution of
interest, the flat-plate Reynolds analogy.

The relation between compressible and incompressible skin-friction
coefficients is computed from the definition of X and Ef in conjunc-

tion with equation (A2). It is assumed that reference conditions Pr
and My will, in general, be functions of the local flow outside the

boundary layer. For this flat-plate case, then, Pr and M, are con-

stant. If equations (5a) and (18) are substituted into equation (A2)
there results
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1 - L -
_m ey m+l m+1 ml
£ )m+l(m £ 1 ) mHl (PelieX Pritr|™ [ He (5)
2 m m He PeHo Ho

The ratio of the skin frictions is, from equations (A2) and (A5),

m 1

er _ prur>m+l tLE\ m+1 (46)
Ty PeHlo o,

at the same Reymnolds number.

Cone in Supersonic Flow With Attached Shock,
Constant Specific Heats

For the cone in supersonic flow with attached shock and constant
specific heats, no pressure gradient exists for zZero angle of attack;

dug dau ar
thus, = - agg = 0. 1In this case, however, r « x &and Frola Constant.
The momentum equation (46) becomes

m+l

N

Since r « x, then r « § because p,. and u, are again constant.
Equation (A7) becomes

_ m+ 1 A\
o = Am(——an n 1>(9e, m g (A8)
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Combination of equations (41) and (A8) ylelds

1
_ m - L ey
°f _ . mlfm+ 1 m+1 (PoUeX m (A9)
2 ( > 2m + 1 Ho

Just as in the case of the flat plate, the solution Z = O for
constant wall enthalpy satisfies the differential equation for Z.
Furthermore, the same compressibility correction for skin friction holds
(eq. (A6)). Finally, it is apparent when comparing the two cases that

1
(Ef)cone _ (cf)cone _ (Em + 1)m+l

() plate (°2) prate "

at the same Reynolds number and for the same wall and stream conditions.
In other words, for the gdame friction coefficlent on cone and plate,

2m + 1
e - 222
( Re)cone m NRe plate

when wall and stream conditions are the same on cone and plate. For the
special case m = 4, this relation is

(NRe> cone %(NRe) plate

a result which compares favorsbly with that of Van Driest (ref. 2) who
obtained

(NRe> cone 2 (NRe> plate

Stegnation Region on Two- and Three-Dimensional Bodiles

Although turbulent flow at a stagnation point has little physical

significance, use of stagnation-point boundary conditions (gt = O) in

the "exact" differential equations (46) and (L47), as well as in the
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epproximate solution, necessitates a stagnation region solution. Such
& solution is easily obtained for the exact case from equations (46)
and (47) by requiring that u, = agX, I =X for axisymmetric flow, and

U, = 8oX for two-dimensional flow, where 8y 1s the dimensionless

stegnation-point velocity gradient. By thie procedure, for a three-
dimensional stagnstion region,

o TT n-l
8 = Ay (&) © (A10)
(ETET)O To + m+ 1
2 RAVAAT
o - () (2
Z = 7 = . - (A11)
ga(ﬂ_e_:) g
He /o\n
and for a two-dimensional stagnation region
- & m-1
& = Ap|—2 (&) ™ (A12)
(BrEr)o Ib + n+1
® /=\2
_d2 t d22 - )-‘-AO(L(H—e-) -_97
He /o\A
Z =12, = (A13)

where

o8
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“dp=-d) - (142 (A15)
A

Two roots appear in each equation for Zo' The negative root must

be chosen as that which gives physically reasonable values of ZO, that

is, between zero and 0.8. (See approximate solution.) This is seen
from figure 2, where 2, for the special case a =1, n=7T, m= 4

has been plotted against stagnation-point wall cooling ratio %g for
o]

two- snd three-dimensional stagnation points (egs. (All) and (A13)). It
is seen that the negative root 1s appropriate.

Equations (Al11) and (Al3) also show that Z 1is not a function of &

in the stagnation region, and hence (%%) =0
o}
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TABLE II.- SUMMARY OF EXPERIMENTAL DATA USED TO COMPARE WITH

PREDICTED HEATING RATES

Figure Reference Remarks
Run 57; EE = 0.663; hemisphere;
13 20 i He » 2
1 = Redius
14 20 Run 61; %ﬁ’- = 0.660; flat-faced
cylinder; 1 = Radius of cylinder
B 0.49; Fp = 19.26 x 106 (nota-
15 20 He
tion of ref. 22); hemisphere;
1 = Radius
g:f’- = 0.77; Fp = 10.85 x 106 (nota-
16 22
tion of ref. 22); hemisphere;
1 = Radius
Run 3%-12; §£~= 0.55; sphere-cone;
17 23 He
1 = Nose redius
Run 5-8; E! = 0.60; sphere-cone;
18 25 > He . s Sp »
1 = Nose radius
B : :
Run 7-3; — = 0.60; sphere-cone;
19 23 H,

1 = Nose radius
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0 Equation (262a) Reference 14 /
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Enthalpy difference ratio, H*/H*

Equation (26a)
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Velocity ratio, u/ue

Figure l.- Variation of enthalpy difference ratio with velocity ratio in
boundary layer for present method and that of reference 1lk.
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O Experimental data (ref. 23)
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————————— Approximate solution
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Figure 19.- Comparison of theory and experiment for a sphere-cone in a
shrouded tunnel. (Run T7-3 of ref. 23.)
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Exact solution, stagnation initial conditions
Approximate solution
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Figure 22.- Distribution of heat transfer on hemisphere cylinder for
typical shock-tube flow conditions. Shock Mach number equals 6.5;

pressure ahead of moving shock equals 4O centimeters mercury;
T' method.
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